Фотоэлектрические датчики

Эксплуатационные и технические характеристики

Фотореле с датчиком освещённости следует выбирать, исходя из условий его будущей эксплуатации. При использовании в уличном освещении датчик света может быть выносным и устанавливаться отдельно, или встроенным в конструкцию светильника. В первом случае фотоэлемент, обладающий небольшими размерами, легче установить в нужное место, защищенное от подсветки. Такие устройства подходят для установки внутри дома и свободно монтируются в электрическом щитке на дин-рейке.

Сумеречный выключатель освещения со встроенным датчиком света обычно располагается возле светильника. Главное, чтобы световой поток не попадал на сенсор.

  • Питающее напряжение. В зависимости от модели, составляет 12 или 220 вольт. То есть, устройства могут работать от постоянного или переменного напряжения. Питание реле на 12 вольт нередко осуществляется от аккумулятора в выносной схеме.
  • Эксплуатационные температурные режимы. Реле с фотоэлементом, применяемое в уличном освещении, должно работать при любых погодных условиях, независимо от времени года. Температурный диапазон рекомендуется выбирать с некоторым запасом, на случай резких скачков жары или холода.
  • Защита корпуса. С этой целью разработана специальная классификация. Например, для наружной установки следует выбирать внешний тип устройства с классом защиты IP44 и выше. В этом случае исключается попадание внутрь корпуса водяных брызг и твердых частиц с размерами свыше 1 мм. Чем выше класс защиты, тем надежнее будет работать выбранное устройство. В домашних условиях вполне достаточно приборов с классом защиты IP23.
  • Мощность подключаемой нагрузки. Любое фотореле соответствует мощности, установленной заводом-изготовителем. При расчетах рекомендуется, чтобы сумма мощностей подключаемых светильников была на 20% ниже этого значения у фотодатчиков сумеречного выключателя. В этом случае устройство прослужит дольше, поскольку не будет работать в экстремальных условиях полной нагрузки.

Классификация ВБО

В соответствии с ГОСТ Р 50030.5.2 оптические бесконтактные выключатели (ВБО) классифицируются на три группы:

  • тип Т — с приемом прямого луча от излучателя;
  • тип R — с приемом луча, возвращенного от отражателя;
  • тип D — с приемом луча, рассеянно отраженного от объекта.

Оптический датчик типа Т

Оптический бесконтактный выключатель ВБО типа Т характеризуется тем, что излучатель и приемник размещены в отдельных корпусах. Прямой оптический луч идет от излучателя к приемнику и может быть перекрыт объектом воздействия. При определении зоны чувствительности Sd в качестве стандартного объекта воздействия используется приемник.

Излучатель и приемник могут получать напряжение питания от различных источников питания. Индикатор излучателя сигнализирует о подаче напряжения питания. Индикатор приемника сигнализирует о срабатывании приемника. Элемент коммутации расположен в приемнике.

Оптические датчики типа R

ВБО типа R размещен в одном корпусе и имеет как излучатель, так и приемник. Приемник принимает луч излучателя, отраженный от специального отражателя. При этом возможны два варианта использования этих изделий:

  • объект воздействия прерывает луч при неподвижно закрепленном отражателе,
  • отражатель закрепляется на подвижном объекте.

Для ВБО типа R зона чувствительности Sd определяется между ВБО и отражателем.

При поставке ВБО типа R отражатели входят в комплект поставки.

Тип D

ВБО типа D размещен в одном корпусе, имеет излучатель и приемник.

Приемник принимает луч, рассеянно отраженный от объекта воздействия. Объект может
перемещаться как вдоль относительной оси, так и под углом к ней.

Для определения нормированных расстояний срабатывания должен быть использован
стандартный объект воздействия:

  • при Smax до 400 мм — белая бумага с отражающей способностью 90%, размером 100х100 мм.
  • при Smax более 400 мм — белая бумага с отражающей способностью 90%, размером 200х200 мм.

При применении объекта воздействия, отличающегося от стандартного, реальные максимальные расстояния срабатывания могут не соответствовать нормированным. Можно использовать следующие поправочные коэффициенты для грубой корректировки расстояний срабатывания в зависимости от материала объекта:

Материал K
Бумага белая 1,0
Бумага черная матовая 0,1
Металл полированный 1,2…1,6
Дерево 0,4

В качестве примера приведены графики реальных границ срабатывания ВБО типа D при
движении стандартного объекта воздействия перпендикулярно относительной оси.

ВБО-М18-76С-3111-С
ВБО-М18-76С-5111-СА

Оптические защитные барьеры

К оптическим бесконтактным выключателям типа Т относится серия многолучевых оптических защитных барьеров ВБО-Э20-…

Расположенные в ряд с шагом 20 мм светодиоды излучателя барьера и соответствующие фотодиоды приемника формируют параллельные лучи, расположенные в одной плоскости. Высота контролируемой плоскости определяется типоразмером защитного барьера (до 1 м), а ширина — разнесением излучателя и приемника (до 16 м).

При проникновении через контролируемую плоскость объекта (например, руки человека) происходит срабатывание коммутационного элемента защитного барьера.

Устройство управления барьером исключает срабатывание выходного коммутационного элемента при случайном кратковременном пересечении лучей.

О справочнике

За последние время автомобилестроение превратилось в чрезвычайно сложную отрасль. Все труднее и труднее становится представить всю отрасль в целом, и еще сложнее постоянно следить за направлениями, которые важны для автомобилестроения. Многие из этих направлений подробно описаны в специальной литературе. Тем не менее, для тех, кто впервые сталкивается с данными темами, имеющаяся  специальная литература не представляется легкой и тяжело усваивается в ограниченные сроки. В этой связи этот «Автомобильный справочник» будет очень кстати. Он структурирован таким образом, чтобы быть понятным даже для тех читателей, которые впервые встречаются с каким-либо разделом. Наиболее важные темы, относящиеся к автомобилестроению, собраны в компактном, простом для понимания и удобном с практической точки зрения виде.

Текст

М 118539 Класс 21 с, 62 зо СССР ОПИСАНИЕ ИЗОБРЕТЕНИЯ Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ; 41.1 Д 1 Заявлено 11 октября 1957 г. за584610/24 в Комитет по делам изобретений и открытий при Совете Министров СССР Опубликовано в Бюллетене изобретений6 за 1959 г.В системах автоматического регулирования и следящих системах применяют фотоэлектрические датчики, состоящие нз двух решеток, связанных соответственно с задающим и отрабатывающим элементами си. стемы. Для ограничения поля зрения фотоэлемента пределами одного шага решетки такие датчики снабжают рамкой, а для модуляции сигналов используют модулятор в форме пустотелого цилиндра с прямоугольными прорезями, расположенными в два ряда в шахматном порядке.Предлагаемый датчик отличается от известных датчиков тем, что решетки имеют в верхней и нижней частях штрихи, равные по ширине половине шага решетки и сдвинутые на четверть шага, причем сдвиг 1 птрихов для каждой из решеток выполнен в разные стороны.Такое выполнение датчика позволяет получить на его выходе при согласованном положении решеток постоянный (не модулированный) сигнал, а при рассогласовании — переменную составляющую сигнала, амплитуда которой пропорциональна величине рассогласования. В результате этого повышается точность отработки в следящей системе.На фиг.изображена схема расположения штрихов на оптических решетках предлагаемого датчика; на фиг. 2 — схема расположения темных и светлых полосприсовмещении решеток; на фиг. 3 — схема рясно. ложенця вырезов в модуляторе.Датчик состоит из двух оптических решеток — задаюв 1 ей 1 и отрабатывающей 2, рамки т, ограничивающей поле зрения фотоэлемента пределами одного шага решетки, и модулятора 4. Решетки 1 и 2 состоят из темных 5 ц прозрачных б или темных и отражающих свет штрихов, .нанесенных поперек направления перемещения. Штрихи в верхней половине каждой из решеток сдвинуты по отношению к штрихам в нижней половице ца четверть шага решетки. Задающая 1 и отрабатывающая 2 решетки отличаются друг от друга тем, что штрихи ца них сдвинуты в противоположные стороны.При наложении обеих решеток друг на друга так, чтобы передняя граница штриха в верхней половине одной из решеток совпадала с пе., 118539релнсй границей штриха в нижней половине другой решетки, в прелс. лдх рамки 3 образуется темная полоса, равная по ширине трем четвертым шага, и сетлдя полоса, рдпдя по ширине одной четвертой шага. Последняя состоит нз лух участко 7 и 8. Через сомещенные решеткии 2 пропуска 1 от сстоой поток, который воспринимается фотоэлементом, Этот поток молулнруется при помощи модулятора 4 с вырезамн 9 н О, расположенными против верхней и нижней поповин решеток и обеспечивающими поперсмснную подачу на них света.В положении согласования плошади светлых участков 7 и 8 в нижней н ерхнсй полоиндх сомсшенной системы решеток будут рдны, следстис чего нд выходе фотоэлемента булет возникать постоянный (нс модулированный) сигнал.11 ри рассогласовании задающая решетка сместится относительно отрабатывдющей, вследствие чего ширина светлого участка 7 или Я в верхней или нижней половине совмещенных решеток (в зависимости от направления перемещения) станет больше, чем ширина соответствующего участка в противоположной половине.Г 1 ри этом на выходе фотоэлемента образуется модулированный сигнал, величина амплитуды которого будет соответствовать величине рассогласования, а фаза в направлен рассогласованияИредмет изобретения1 гогоэлф кгрифнскнй латник лля лслящнх снспем, гитонщий пз лух 11 ниток, сщгзднных соотетстеши с залкипим н отрдбдтыдющнм элементами системы, рамки, ограничивающей поле зрения фотоэлемента пределами одного шага решетки, и модулятора в форме пустотелого цилиндра с прямоугольными прорезями в нем, расположенными в два ряда в шахматном порядке, отл и ч а ю щ и й с я тем, что, с целью повышения точности работы следящей системы, указанные решетки имеют в верхней и нижней частях штрихи, равные по ширине половине шага решетки и сдвинутые на четверть шага, причем сдвиг штрихов для каждой из решеток выполнен в разные стороны.

Смотреть

Принцип работы и особенности прибора

Наиболее востребованными устройствами, позволяющими автоматически управлять освещением, являются датчики присутствия для включения света и датчики движения. При установке осветительного прибора данные устройства устанавливаются в его цепь. Как только перемещающийся объект оказывается в радиусе их воздействия, эти приборы включают освещение за счет автоматической подачи сигнала. Если объект остановился или покинул радиус воздействия, осветительный прибор через некоторое время прекращает свою работу.

Датчик присутствия в отличие от датчика движения имеет в основе своей работы сенсор и функционирует благодаря эффекту Доплера, который заключается в динамике длины и частоты волны. Данная динамика улавливается сенсором, который, в свою очередь, направляет ее на устройство с целью включения света или звука. При этом на подачу сигнала не влияют дальнейшее движение или неподвижность объекта, в качестве которого могут выступать люди и крупные звери. Датчик присутствия имеет в своей конструкции антенну и генератор. В случае, если сигнал отсутствует, прибор находится в спящем режиме.

Фотоэлементы промышленного назначения

На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:

  • высокая надёжность при длительном (до 25—30 лет) ресурсе работы;
  • высокая доступность сырья и возможность организации массового производства;
  • приемлемые с точки зрения сроков окупаемости затрат на создание системы преобразования;
  • минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос), включая ориентацию и стабилизацию станции в целом;
  • удобство техобслуживания.

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.[источник не указан 3514 дней]

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью[источник не указан 3514 дней]. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний, Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.[источник не указан 3514 дней]

Кроме того, фотоэлементы используются в защитных устройствах, в системах управления производственными процессами, химических анализаторах, системах контроля за сгоранием топлива, за температурой, для контроля качества продукции массового производства, для светотехнических измерений, в указателях уровня, в счётных устройствах, для синхронизации, для автоматического открывания дверей, в реле времени, в записывающих устройствах.

Разновидности датчиков освещения

Программируемое цифровое реле

Классификация сенсоров происходит по нескольким параметрам.

По конструктивному исполнению модели бывают:

  • Фотоэлемент расположен в одном корпусе с остальными деталями. Сумеречное реле устанавливается рядом с прибором освещения.
  • Устройство с выносным (наружным) фотоэлементом. Основной блок устанавливается на DIN-рейку, светочувствительный сенсор на улице.

По типу управления:

  • Устройства с таймером – прибор настраивается на уровень освещенности и задается временной промежуток работы. Например, светильники отключаются с наступлением ночи.
  • Фотореле с принудительным отключением – при необходимости активируются и выключаются вручную.
  • Программируемые сумеречные реле – технологически сложные устройства, работающие по заданным настройкам.

По типу нагрузки:

  • светодиодные;
  • люминесцентные (энергосберегающие);
  • лампы накаливания.

Пассивные оптико-электронные охранные извещатели

Устройства на основе пассивного восприятия ИК излучения получили более широкое распространение, так как они являются более дешевыми устройствами, а благодаря широкому выбору оптических устройств (систем из линз Френеля) пользователь быстро получает различные формы зон сканирования, что облегчает возможность создания надежных систем охраны в здания со сложной планировкой внутренних помещений. Пассивные ИК детекторы движения используются в системах тревожной сигнализации и СКУД для охраны:

  • Производственных и общественных строений, квартир и частных домовладений;
  • Отдельных элементов сооружений наиболее уязвимых к проникновению: оконных проемов и внешних дверей, а также стен, витрин, потолков и пола;
  • Периметров земельных участков и ограждений;
  • Отдельных материальных ценностей — дорогостоящих предметов искусства или уникальных приборов.

Пассивный оптико-электронный извещатель формирует область сканирования, состоящую из узких чередующихся чувствительных и неактивных зон в форме веера разнонаправленных в одной плоскости. Взаимное расположение лучей в пространстве может быть различным: горизонтальным, вертикальными, в несколько рядов или собранным в один узкий луч. Форма зон сканирования условно разделяется на 5 основных типов:

  1. Широкоугольная поверхность в один ярус лучей, исходящая из одного источника — «веер»;
  2. Широкоугольная поверхность с узкими лучами, ориентированными в одной плоскости — «Штора»;
  3. Узконаправленный луч — «лучевой барьер»;
  4. Одноярусная поверхностная панорама;
  5. Многоярусная объемная.

При установке пассивных оптико-электронных извещателей необходимо соблюдать следующие рекомендации:

  • Не устанавливать ИК детектор над конвекционными источниками тепла;
  • Не направлять чувствительную зону прибора на прожекторы, тепловентиляторы, мощные лампы накаливания и иные устройства которые могут вызвать быстрое возрастание локального температурного фона;
  • Предохранять устройство от чрезмерного влияния солнечного излучения;
  • Воздержаться от нахождения в ответственной зоне обнаружения шкафов, штор и других типов перегородок которые могут создать «мертвую» контролируемую зону.

Устройство датчиков присутствия

Датчики представляют собой приборы, состоящие из одного (однопозиционные), двух (двухпозиционные) или нескольких (многопозиционные) блоков. Каждый – устройство в пластиковом корпусе с микросхемой для отправки, приема и обработки сигналов.

Их конструктивная особенность – отсутствие перемещающихся, испытывающих механические нагрузки деталей. Исключение – эластичные подложки с тензорезисторами в датчиках нагрузки.

Как следствие, возможные неисправности ограничиваются выходом из строя деталей микросхем и самостоятельному устранению не подлежат.

Варианты монтажа датчиков. В зависимости от конструктивных особенностей датчики устанавливаются в монтажные коробки либо непосредственно на стены или потолок (накладные модели).

Преимуществ в эксплуатации ни один из способов не дает, на выбор могут повлиять только дизайнерские решения.

Способы получения сигнала. По способу получения сигнала датчики присутствия бывают двух видов:

  • активные – излучают энергию в окружающую среду и получают данные на основе отклика (ультразвуковые, фотоэлектрические);
  • пассивные – фиксируют объекты по их свойствам, предварительно не посылая сигналы (инфракрасные, акустические, емкостные, датчики нагрузки).

Передача сигнала датчиками присутствия. Получив и обработав информацию, датчик присутствия отправляет сигнал на исполнительные устройства:

  • посредством электрических проводов;
  • по защищенному радиоканалу.

Во втором варианте расстояние между датчиком и принимающим блоком достигает 200 м. Использование усилителей увеличивает этот показатель, а препятствия на пути – снижают.

При беспроводной передаче сигнала для связи с конкретным исполнительным устройством датчику задается его код. Это осуществляется путем установки джамперов (перемычек).

Если использовать приборы с кодом обучения, то нужды в установке перемычек нет: для коммутации достаточного одновременного нажатия специальных кнопок на датчике и принимающем блоке.

Преимущества беспроводной передачи сигнала – простота монтажа оборудования и снижение затрат на электрические провода.

Подключение

После выбора необходимого устройства, можно приступать к его установке и подключению. Все необходимые схемы содержаться в технической документации.

Данные схемы различаются в зависимости от той или иной модификации фотореле vega или легранда, а общий порядок действий является одинаковым для всех приборов этого типа. Каждый вывод состоит из трех проводов, обозначенных разными цветами. Проводник черного цвета служит обычной фазой, подающей питание, красный провод также является фазным, подводимым к источнику освещения. Нулевой провод окрашивается в зеленый цвет.

Установка и подключение датчика освещенности выполняется в следующем порядке:

  • До начала монтажа на стене устанавливается распределительная коробка, где будут соединяться провода.
  • Датчик освещенности подключается в соответствии со схемой, нанесенной на корпус или находящейся в документации. Крепление выполняется с помощью кронштейна. Необходимо исключить попадание на сумеречное реле прямых солнечных лучей.
  • Корректировка системы под местные условия посредством настроек и регулировок. Датчик должен правильно реагировать на изменяющиеся условия освещенности.
  • При раздельной установки датчика с выносным переключателем регулировок, они соединяются между собой кабелем.

По окончании монтажа необходимо выполнить проверку работоспособности системы. С этой целью сумеречный выключатель подключается к сети, а светильники должны включаться или выключаться.

Схема подключения фотореле для уличного освещения

Схема подключения датчика движения для освещения с выключателем

Схема подключения выключателя

Схема подключения проходного выключателя

Двухклавишный проходной выключатель схема подключения

Как подключить выключатель с регулятором яркости

Производители и модели датчиков присутствия

Рассмотрим, какие модели датчиков присутствия предлагают мировые компании.

Theben AG (Германия)

В 1921 году в Штутгарте Пауль Швенк основал компанию, изготавливавшую таймеры и аксессуары для часов.

Рачительный хозяин, стремясь к экономии, изобрел и в 1930 году запустил в производство первый датчик обратного отсчета для управления освещением, который стал хитом продаж.

Успех стимулировал дальнейшее стремление к инновациям, что превратило Theben AG в европейского лидера в производстве приборов для эффективного энергосбережения, различных датчиков, “умных” розеток Wi-Fi и т.д.

Датчики присутствия Theben, управляющие системой освещения:

SPHINX 104-360 SPHINX 104-360/2 SPHINX 104-360 AP
Принцип действия
инфракрасный инфракрасный инфракрасный
Способ монтажа
потолок, встроенный потолок, встроенный потолок, накладной
Угол охвата
360о 360о 360о
Радиус контроля
7 м 7 м 7 м
Число каналов
1 2 1
Макс. мощность ламп
1800 Вт 1800 Вт 2000 Вт
Уровень освещенности
10-2000 Лк 10-2000 Лк 10-2000 Лк
Задержка выключения
1 с-20 мин 1 с-20 мин 1 с-20 мин
Уровень защиты
IP 41 IP 41 IP 41

Все приборы оборудованы встроенным регулируемым люксметром и пультом дистанционного управления (см. Розетки с дистанционным управлением).

У SPHINX 104-360/2 есть второй канал выхода, с задержкой отключения 10 сек – 60 мин, сигнал с которого может подаваться на кондиционер, радиатор электроотопления, вентилятор.

OMRON (Япония)

Компания OMRON (г. Киото), основана Кадзума Татеиси в 1933 году. В послевоенные годы она стала одной из фирм-творцов “японского экономического чуда”.

Основное направление деятельности – производство средств автоматизации и сенсорных устройств. В этой области ей принадлежит более 40% японского рынка. Годовой оборот компании – более 5 миллиардов долларов.

Фотоэлектрические датчики обнаружения OMRON:

E3FA/E3FB-B/-V E3H2 E3T-C
Обнаружение объекта: максимальное расстояние срабатывания
Барьерный режим
20 м 15 м 4 м
Рефлекторный режим
4 м 3 м 2 м
Диффузный режим
1 м 0,3 м 0,3 м
Источник света (длина волны)
красный светодиод (624 нм) красный светодиод (624 нм) светодиоды: инфракрасный (870 нм), красный (630 нм)
Напряжение питания
10-30 V постоянный ток 10-30 V постоянный ток 10-30 V постоянный ток

Прибор Е3Н2 оборудован ярким светодиодным индикатором, упрощающим выравнивание, а габариты Е3Т-С облегчают его монтаж в условиях стесненного пространства.

ESYLUX (Германия)

Компания ESYLUX (г. Аренсбург) разрабатывает и выпускает светильники для аварийного и наружного освещения, датчики присутствия и движения, звуковые оповещатели, детекторы дыма, извещатели пламени. Подтверждением высокого уровня продукции является полученный ею знак качества “German Engineering”. Филиалы и торговые представительства фирмы открыты в 13 странах

В таблице представлены образцы датчиков присутствия производства ESYLUX.

PD 360/8 Basic PD 360/8 Basic SMB PD 180i/R
Принцип действия
инфракрасный инфракрасный инфракрасный
Способ монтажа
потолок, накладной потолок, встроенный стена, встроенный
Угол охвата
360о 360о 180о
Дальность действия
8 м 8 м 16 м
Число каналов
1 1 2
Макс. мощность ламп
2300 Вт 2300 Вт 2300 Вт
Уровень освещенности
5-2000 Лк 5-2000 Лк 5-2000 Лк
Задержка выключения
15 с-30 мин 15 с-30 мин 12 с-60 мин
Уровень защиты
IP 40 IP 40 IP 44

Рассмотрим датчик PD 180i/R с пультом дистанционного управления и дальностью действия 16м. Повышенный класс защиты позволяет монтировать его во влажных помещениях, а второй канал с задержкой 5 – 120 минут – подключать дополнительное оборудование.

Ссылка на основную публикацию